Lecture Notes on OpenCV Functions (these are just a few of the many, many functions):

Today | am going to give this document that | have put together. | have found these notes and images
from all over the Internet. This RGB picture below is a very famous image. It’s been used as example for
years on image processing, almostado every textbook I've ever looked at has had this image. Recently it
was discovered the woman in this image was a prostitute and her client, a computer scientist took the
picture and started using it with his research. It spread from there and now the facts are out we have
many algorithms and analysis of computer vision thanks to the field of prostitution. That sounds bad,
prostitution is bad, but the history of it with computer vision is a little witty.

| am writing this in a hospital room so give me a break, I'm a little off my game.

In this document are several OpenCV functions that are important, many you will use in the next
project. Others I’'m giving you because they will be needed later when we do a little machine learning
on images.

Next I’'m going to write some source code, in Python, to demo how each of these work on one of my
images.

RGB red green blue values- notice even though it’s all blue there are different values of blue, it’s kind of
like a grayscale image with just the blue channel.

X Red x| Green 800 (x| Blue

Converting from one format such as RGB to GrayScale

Resizing Images

Machine learning models work with a fixed sized input. The same idea applies to computer
vision models as well. The images we use for training our model must be of the same size.

Now this might become problematic if we are creating our own dataset by scraping images
from various sources. That’s where the function of resizing images comes to the fore.

Images can be easily scaled up and down using OpenCV. This operation is useful for
training deep learning models when we need to convert images to the model’s input shape.
Different interpolation and downsampling methods are supported by OpenCV, which can be
used by the following parameters:

INTER_NEAREST: Nearest neighbor interpolation
INTER_LINEAR: Bilinear interpolation

INTER_AREA: Resampling using pixel area relation
INTER_CUBIC: Bicubic interpolation over 4x4 pixel neighborhood
INTER_LANCZOSA4: Lanczos interpolation over 8x8 neighborhood

oo~

See source code for example.

Rotating Images

Remember the first program when | had you rotate an image to see how to do it, and what it
entails, here is why we do this more than you think........

Suppose we are building an image classification model for identifying the animal present in
an image. So, both the images shown below should be classified as ‘dog’:

But the model might find it difficult to classify the second image as a Dog if it was not trained
on such images. So what should we do?

https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_appendices/ippi_appB_LanczosInterpolation.htm

Let me introduce you to the technique of data augmentation. This method allows us to
generate more samples for training our deep learning model. Data augmentation uses the
available data samples to produce the new ones, by applying image operations like rotation,
scaling, translation, etc. This makes our model robust to changes in input and leads to
better generalization.

Rotation is one of the most used and easy to implement data augmentation techniques. As
the name suggests, it involves rotating the image at an arbitrary angle and providing it the
same label as the original image. Think of the times you have rotated images in your phone
to achieve certain angles — that’s basically what this function does.

SEE the OPENCV Python Source code | will link for this lecture for an example

Image Translation

Image translation is a geometric transformation that maps the position of every object in the
image to a new location in the final output image. After the translation operation, an object
present at location (x,y) in the input image is shifted to a new position (X,Y):

X =x+dx

Y =y+dy
Here, dx and dy are the respective translations along different dimensions.
Image translation can be used to add shift invariance to the model, as by tranlation we can
change the position of the object in the image give more variety to the model that leads to
better generalizability which works in difficult conditions i.e. when the object is not perfectly
aligned to the center of the image.
This augmentation technique can also help the model correctly classify images with partially

visible objects. Take the below image for example. Even when the complete shoe is not
present in the image, the model should be able to classify it as a Shoe.

This translation function is typically used in the image pre-processing stage. Check out the
below code to see how it works in a practical scenario:

SEE the OPENCV Python Source code | will link for this lecture for an example

Simple Image Thresholding

Thresholding is an image segmentation method. It compares pixel values with a threshold
value and updates it accordingly. OpenCV supports multiple variations of thresholding. A
simple thresholding function can be defined like this:

if Image(x,y) :
threshold , Image(x,y) = 1
else:

Image(x,y) =0

https://docs.opencv.org/3.4/d7/d4d/tutorial_py_thresholding.html

Thresholding can only be applied to grayscale images.

A simple application of image thresholding could be dividing the image into it's foreground
and background.

Qiriginal Image BINAR‘(THRESH | BINARY INW

Adaptive Thresholding

In case of adaptive thresholding, different threshold values are used for different parts of the
image. This function gives better results for images with varying lighting conditions — hence
the term “adaptive”.

Otsu’s binarization method finds an optimal threshold value for the whole image. It works
well for bimodal images (images with 2 peaks in their histogram).

https://en.wikipedia.org/wiki/Otsu%27s_method

Original Image Global Thresholding

Adapt Gaussian Thresholding

Image Segmentation (Watershed Algorithm)

Image segmentation is the task of classifying every pixel in the image to some class. For
example, classifying every pixel as foreground or background. Image segmentation is
important for extracting the relevant parts from an image.

The watershed algorithm is a classic image segmentation algorithm. It considers the pixel
values in an image as topography. For finding the object boundaries, it takes initial markers
as input. The algorithm then starts flooding the basin from the markers till the markers meet
at the object boundaries.

Watershed line Catchment basins

Image Source :- Mathworks

Let’s say we have a topography with multiple basins. Now, if we fill different basins with
water of different color, then the intersection of different colors will give us the object
boundaries. This is the intuition behind the watershed algorithm.

INPUT IMAGE SEGMENTATION MASK

Bitwise Operations

Bitwise operations include AND, OR, NOT and XOR. You might remember them from your
programming class! In computer vision, these operations are very useful when we have a
mask image and want to apply that mask over another image to extract the region of
interest.

view rawBitwise Operations.py hosted with by GitHub

https://docs.opencv.org/3.4.0/d0/d86/tutorial_py_image_arithmetics.html
https://gist.github.com/saurabhpal97/5edab42610ae93ecb1aa02f18150b05f/raw/26008ab29b837a78dcb6bfd9b74f9c5ecca1b5d9/Bitwise%20Operations.py
https://gist.github.com/saurabhpal97/5edab42610ae93ecb1aa02f18150b05f#file-bitwise-operations-py
https://github.com/

INPUT MASK BITWISE AND RESULT

In the above figure, we can see an input image and its segmentation mask calculated using
the Watershed algorithm. Further, we have applied the bitwise ‘AND’ operation to remove
the background from the image and extract relevant portions from the image. Pretty
awesome stuff!

Edge Detection

Edges are the points in an image where the image brightness changes sharply or has
discontinuities. Such discontinuities generally correspond to:

Discontinuities in depth
Discontinuities in surface orientation
Changes in material properties
Variations in scene illumination

Edges are very useful features of an image that can be used for different applications like
classification of objects in the image and localization. Even deep learning models calculate
edge features to extract information about the objects present in image.

Edges are different from contours as they are not related to objects rather they signify the
changes in pixel values of an image. Edge detection can be used for image segmentation
and even for image sharpening.

Image Filtering

In image filtering, a pixel value is updated using its neighboring values. But how are these
values updated in the first place?

Well, there are multiple ways of updating pixel values, such as selecting the maximum value
from neighbors, using the average of neighbors, etc. Each method has it's own uses. For
example, averaging the pixel values in a neighborhood is used for image blurring. Another
thing you did in the first assignment.

Origin x

a | b e I
el FHeul|lv|w

gl h|i x ||] =

. \ %’)ffginal Image Filtar
Simple 391 " e Pixels
h’rﬁg}ahum-ﬁai‘ -J
Corncases — PTET
r¥a +s%h + t%c +
w¥d + w¥ +
¥ Image £ (x. y) x®g +%h + 2%

Gaussian filtering is also used for image blurring that gives different weights to the
neighboring pixels based on their distance from the pixel under consideration.

For image filtering, we use kernels. Kernels are matrices of numbers of different shapes like
3 x 3, 5x5, etc. A kernel is used to calculate the dot product with a part of the image. When
calculating the new value of a pixel, the kernel center is overlapped with the pixel. The
neighboring pixel values are multiplied with the corresponding values in the kernel. The
calculated value is assigned to the pixel coinciding with the center of the kernel.

ORIGINAL AFTER GAUSSIAN KERMEL

Image Contours

A contour is a closed curve of points or line segments that represents the boundaries of an
object in the image. Contours are essentially the shapes of objects in an image.

Unlike edges, contours are not part of an image. Instead, they are an abstract collection of
points and line segments corresponding to the shapes of the object(s) in the image.

We can use contours to count the number of objects in an image, categorize objects on the
basis of their shapes, or select objects of particular shapes from the image.

ORIGINAL WITH CONTOURS

® ®
Om % Omm %
H A B A

Scale Invariant Feature Transform (SIFT)

Keypoints is a concept you should be aware of when working with images. These are
basically the points of interest in an image. Keypoints are analogous to the features of a
given image.

They are locations that define what is interesting in the image. Keypoints are important,
because no matter how the image is modified (rotation, shrinking, expanding, distortion), we
will always find the same keypoints for the image.

Scale Invariant Feature Transform (SIFT) is a very popular keypoint detection algorithm.
It consists of the following steps:

Scale-space extrema detection
Keypoint localization
Orientation assignment
Keypoint descriptor

Keypoint matching

Features extracted from SIFT can be used for applications like image stitching, object
detection, etc. The below code and output show the keypoints and their orientation
calculated using SIFT.

| have many more of these, but I'm going to stop there for today. We will use many of these
features on Friday’s Project this week.

	Resizing Images
	Image Translation
	Simple Image Thresholding
	Adaptive Thresholding
	Image Segmentation (Watershed Algorithm)
	Bitwise Operations
	Edge Detection
	Image Filtering
	Image Contours
	Scale Invariant Feature Transform (SIFT)

